Material

Petrosadid: Material

If you walk through any large warehouse and look around, it seems that valves come in three flavors: black, silver and gold. These “flavors” are really iron, steel and bronze, which constitute the lion’s share of valve body materials used in today’s valve industry.

Valve designers also utilize dozens of other metals and alloys to accomplish their goal of effective valve design and function. So why do we need a huge variety of materials for valve construction? Why can’t that golden valve in the big box store work for everything? The answer is that valve materials, particularly valve body materials, are chosen primarily for two reasons—strength and corrosion resistance. And in valve material selection, one type does not fit all.

برای اطلاعات بیشتر با ما تماس بگیرید
مرکز پشتیبانی:
مرکز پشتیبانی

Withstanding Stresses

Petrosadid: Material

Strength in a valve is its ability to withstand the internal stresses generated by containing and controlling the fluid under pressure. Strength can be measured in several ways, but the most common measure is by quantifying the metal’s tensile strength. Tensile strength is the resistance of the metal to stretch or break when pulled. The ability of the metal to stretch slightly is called “ductility,” and some ductility is generally useful in valve applications. But not all metals have good ductility. For example, cast iron is not ductile at all and it bends very little before it breaks. This lack of ductility is called “brittleness.” While brittleness is expected in cast iron, it is not expected and definitely not wanted in most valve metals such as cast steel.

Generally, the brittle cast irons are only used for lower pressures, particularly below 300 psi and in situations where water hammer (sudden pressure spikes) is not an issue. Higher pressures are reserved for the stronger and more ductile steel and high alloy valves.

Corrosion Resistance

Petrosadid: Material

The second major consideration in choosing a valve material is its corrosion resistance. Corrosion is the breakdown of a metal due to attack by various chemical reactions. We all have seen corroded bolts or rusted out fenders on a car. This rust and corrosion is a result of a chemical oxidation of the steel caused by a combination of oxygen and iron, with moisture helping to accelerate the process. In valve materials, basic exterior rusting of the valve is usually secondary to the corrosion going on within the valve due to the unique characteristics of the fluid contained inside it. Some fluids result in virtually no corrosive action to the inside of the valve. For example, steel valves in non-sour crude oil service could conceivably last forever, because the clean oil keeps the corrosion and oxidation from occurring, and the lubricity of the oil keeps the valve in tip-top shape.

Another important aspect of a valve material’s strength is that metals become softer and lose their strength as the operating temperature is raised. For example, a low-carbon-steel, grade WCB valve has an operating pressure of 285 psi at 100 degrees, but only 50 psi at 900 degrees!

The dangers of corrosion damage are particularly high in the chemical manufacturing industry where the issues of strong chemicals, high pressures and high temperatures cross paths. The harsh acids and other compounds can sometimes eat through metals such as iron and steel in a matter of days or even hours. The development of corrosion-resistant alloys was borne out of the necessity to help contain and control the flow of these products. These corrosion-resistant alloys are in the family of nickel alloys commonly known as stainless steels. Most of them are an alloy of chromium and molybdenum, plus other elements that combine to create their corrosion resistant armor.

Bodies and Bonnets

Petrosadid: Material

Valve shells (bodies and bonnets) are usually manufactured from a combination of castings and/or forged or wrought components. The castings are made by pouring molten metal into a mold or pattern of the appropriate shape. The parts are then removed from the mold, cleaned up and machined as necessary. The forging process creates a component by shaping a red-hot piece of metal under high pressure in a forging press. This process yields parts that are free from the defects that often plague metal castings such as shrinkage and porosity. Wrought components are those that have been intensely rolled or squeezed through a mandrel, sometimes at room temperature and sometimes at very high temperatures. In valves, wrought components, which are usually round in shape, are found most often in stems or spindles. As cousins to forgings, wrought components also are devoid of the defects that often are found in castings.

You might wonder, if forgings and wrought components are so great, then why aren’t they used in all valves? The answer is simple—cost. Castings are much cheaper to produce than forgings. In a world where money is no object and ultimate quality is the only goal, all valves would be forged. But the casting process usually achieves the desired ratio of strength to cost, although defects inherent in the casting process have to be considered. And if an additional degree of strength or safety factor is required, the valve designer usually has only to increase the casting’s thickness. Although there are some challenges resulting from the current crop of imported steel castings, cast valves have earned their keep very well over the last 150 years or so.

Valve Trim

Petrosadid: Material

Although valve shell material selection is very important, other components must receive the same care when it comes to materials selection. Of particular concern is the valve’s trim. Valve trim is loosely defined as the closure elements in a valve, including disc, ball and seats, as well as the stem or spindle, all of which are exposed to the fluid contained in the valve. Valve closure element materials selection is very important because of the need to consider both corrosion resistance and possible erosion, caused by the high velocity created as the valve is closed and opened. As you know from using a narrowed down nozzle on a garden hose, the water sprays out farther and faster through the narrowed orifice. This velocity is inversely proportional to the size of the opening or orifice. This same situation occurs in a valve as it is cracked open or nearly closed. The smaller opening creates a very high velocity that can actually wash away the metal in the areas adjacent to the narrow flow path.

The erosion resistance of a material must be considered along with strength and corrosion resistance when choosing trim materials. This situation becomes more critical in higher pressures, with their resultant higher velocities through small orifices. Special erosion-resistant alloys, called hard-facings, have been developed to combat this situation in steel valves. The most popular alloy for this service is a Cobalt-based alloy called Stellite. Stellite is extremely hard and also very corrosion resistant.

Even if a hard-facing is not used, the trim material is nearly always a material with higher corrosion and/or erosion resistance, such as bronze in iron valves and stainless steel in steel valves. There are exceptions to this rule, particularly in alloy valves such as stainless steel and bronze, where the trim is either integral with the body or disc, or the trim material has similar chemistry to the valve body.

The valve stem or spindle is also an important trim component, since it operates within the fluid flow area, as well as outside the valve body. The stem must transmit the force required to open and shut the disc or ball against the pressure of the flow. Since some of the stem is in the flow area, some attention must be paid to corrosion and erosion resistance; however, the most important characteristic is strength. The stem cannot break off while opening or closing.

Standards

Petrosadid: Material

Nearly all the metals used in valve manufacturing are listed in detail in material specifications. In the United States, as well many other countries, the American Society of Testing and Materials (ASTM) is the governing body for these standards. An ASTM material standard will contain the acceptable chemical composition of the material, its strength requirements, and often incidental information such as how it should be manufactured, heat treated and tested. Table 2 contains a list of some of the more common ASTM valve body component standards.

Specific Industries, Specific Material Choices

The red-helmeted fire hydrant is the visible tip of the municipal water industry. Water distribution valves usually only see relatively low pressures, and chemicals and high temperature are not an issue, so the materials choice is not difficult. For this reason cast or gray iron is the choice for most water valves, unless they are small in size, when the material of choice becomes bronze. By the way, those hydrants are just globe valves with long bonnet extensions. And they too are made of cast iron. In high-rise office buildings it is necessary to get water to the top floors, requiring the use of high-pressure pumps. This means that at ground level the related piping and valves might see 600-800 psi or more, which is beyond the capability of the iron valve’s working pressure. In this case, cast steel valves would be used instead. Improvement in power plant design has always pushed the envelope of valve materials and construction. Power plant boiler temperatures and pressures have risen to levels that require very tough alloy steels. Chrome/Moly steels, particularly the 9 Cr-1Mo-V, C12A alloy, as well as some stainless steels, are used in most of today’s high pressure/tempera¬ture power plant applications. For lower temperature service in these facilities, cast steel such as ASTM A216, grade WCB is used. Nuclear power plants have material requirements similar to those of fossil power plants. Today, the prime valve material for critical applications in nuclear power plants is austenitic stainless steel. One unusual fact about nuclear plant valve materials is that cobalt-based hard-facing alloys, such as Stellite 6, are not used, due to the potential for cobalt in the hard-facing becoming irradiated in radioactively hot areas and spreading to other cobalt alloys in the fluid stream. For these situations, non-cobalt-containing hard facings are used.

Many pulp and paper mill process applications require strong chemical resistance. As a result the austenitic stainless steels (300 series), with their high chemical resistance, are a frequent choice for tough paper and pulp processing applications.

The chemical industry creates unique valve challenges due to the vast array of corrosive environments found in chemical processing. While the carbon steels and basic stainless steels such as 316ss, work well in other industries, more corrosion resistance is often needed for these challenging service conditions. Austenitic stainless steels (300 series) such as 317, 321 and 347 are regularly utilized to meet those requirements. Additionally, nickel “superalloys” such as Hastelloy and Inconel are often found where the combination of high strength and very high corrosion resistance is required.

Modern oil refining and petrochemical manufacturing provide some of the toughest challenges for valve materials. The silver-hued cast steel valves reign, and are found by the thousands in every refinery. The most popular cast carbon steel is grade WCB. It is suitable for use in temperatures up to 800° F. For higher temperatures the ASTM A217 cast alloys such as WC6, WC9, C5 and C9 are often utilized. Their forged counterparts—ASTM A182, grades F11, F22, F5 and F9—handle the same work in smaller-sized valves. High temperatures, caustics, acids and volatile gases create opportunities for many non-commodity materials. Low carbon or “L” grade stainless steels are used often, as well as super stainless steels such as 317, 347 and Alloy 20. Very high temperatures often call for Inconels and high-carbon stainless steels such as 304H. Copper/nickel alloys are also found in very demanding refining situations, along with Hastelloys and duplex stainless steels.

Many oilfield valves are designed to withstand great pressures, although high temperatures are generally not a consideration. Everything from carbon steels to hardened martensitic (400 series) can be found in oilfield production valves.

An important material consideration in both refining and oil production occurs when the crude oil is very sour. This sour crude is laced with hydrogen sulfide, which is lethal to both humans and ¬certain metals. The situation is so critical that NACE International, an inter¬national corrosion engineering organization, has developed material recommendations to help piping designers deal with this dangerous condition. Many materials are suitable for sour service; however, strict guidelines as to maximum material hardness and heat treatments must be followed in order to keep catastrophic failures from occurring.

Valve materials for extreme cold (cryogenic) conditions must also be selected carefully. Materials chosen must remain ductile at ultra-low temperatures, which is not a trait of plain carbon steels or cast irons.

VALVE MATERIALS: A SHORT HISTORY

Petrosadid: Material

More than 2,000 years ago, the Romans made bronze plug valves for use in their fresh water distribution systems. As advanced as the Romans were they couldn’t keep their technological advances from disappearing under the cloak of the dark ages. It wasn’t until James Watt and others began their experiments into steam power in the late 1700s that valve technology began to surface again.

During this period, most valves were made out of the same materials as the pipe and boilers of the time, and that was iron. Iron was relatively easy to cast and was used for numerous piping components. In the mid 1800s, brass foundry productivity improved to the point where most of the small valves (1/2 to 2 inches) were made of bronze.

Bronze and Iron Rule

The 19th century came to a close with bronze and iron as the materials of choice for valve construction. These materials could even handle the “extra heavy” 250 psi steam working pressures of the period. Since the Bessemer Converter jump-started the steel age in the 1860’s, steel castings had been working their way into American industry. The turn of the century saw steady increases in power plant steam pressures as superheated steam came into vogue and the capabilities of iron valves and fittings were approaching their practical design limits. Initial attempts to solve this materials issue resulted in the development of a much stronger cast iron called ferro-steel, also called semi-steel. This material was a cast iron that had been mixed with steel scrap during the melting process.

The semi-steel was only a stopgap as cast steel valves began to appear in all the major manufacturer’s catalogs during the first decade of the 20th century. By 1950, cast steel would become the primary valve construction material for the steam generation industry.

Materials for Valve Trim

The material of choice for valve trim was bronze until the introduction of Monel in 1906. Within a decade or two, Monel became the severe service trim material of the valve industry. Monel held that position until air-hardenable, martensitic stainless steels (400 series) became popular just prior to World War II. Following the war, Stellite, a cobalt alloy, took the position of the best severe service valve trim material.

Demand for Alloys

Meeting the production needs of World War II fostered much technological advancement in American industry, including valve design. The race for synthetic rubber, 100 octane gasoline and other valuable products needed for the war effort created a demand for alloys that could handle the pressures, temperatures and corrosion created by these processes. Valves of austenitic stainless steel (300 series) helped handle production in these plants, and these materials are still a staple today.

As pressures and temperatures continued to rise in steam power plants and refinery process equipment, the plain carbon steels were not hearty enough, so alloys containing chrome and molybdenum were developed, such as the 1-1/4, 2-1/4, 5 & 9 chrome/moly alloys. Today the ultimate metal for super-heated, power generation valves is C12A, an alloy of 9% chrome, molybdenum, vanadium and other elements.

Importance of Elastomers

Probably the most important valve material to come out of the 20th century was not a metal at all, but an elastomer called Teflon. Created by DuPont in 1938 and perfected in the late 1940s, this material gave life to the soft-seated ball valve industry. It is safe to say that without Teflon, there would not be the huge ball valve industry that exists today. The development of nickel alloy and superalloy castings such as Hastelloy and Inconel during the past 40 years have helped valve manufacturers meet the pressure temperature rating and corrosion resistance requirements found in many of today’s critical process environments. Metallurgists are continuing to improve these unique materials to meet tomorrow’s fluid handling challenges. And tomorrow’s ultimate valve material might possibly be a graphite composite, containing no metal at all.

Forged carbon Steel valves: ASTM A105/ A105M, This specification covers standards for forged carbon steel piping components, that is, flanges, fittings, valves, and similar parts, for use in pressure systems at ambient and higher-temperature service conditions. Materials shall be subjected to heat treatment (annealing, normalizing, tempering, or quenching). Material shall conform to carbon, manganese, phosphorus, sulfur, silicon, copper, nickel, chromium, molybdenum and vanadium contents. The forgings shall be subjected to tension, hardness and hydrostatic tests, with the latter applicable when required. Material shall adhere to tensile strength, yield strength, elongation, reduction of area, and hardness requirements. Guidelines for retreatment, repair by welding, and product marking are given.

Forged carbon Steel valves For low Temprature Service: ASTM A350/ A350M (LF1, LF2, LF3, LF5, LF6, LF9, LF 787), This specification covers several grades of carbon and low alloy steel forged or ring-rolled flanges, forged fittings and valves for low-temperature service. The steel specimens shall be melt processed using open-hearth, basic oxygen, electric furnace or vacuum-induction melting. A sufficient discard shall be made to secure freedom from injurious piping and undue segregation. The materials shall be forged and shall undergo heat treatment such as normalizing, tempering, quenching and precipitation heat treatment. Heat analysis and product analysis shall be performed wherein the steel materials shall conform to the required chemical compositions of carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, molybdenum, copper, columbium, vanadium, and nitrogen. The materials shall also undergo tension tests and shall conform to the required values of tensile strength, yield strength and elongation. Impact tests shall also be performed and the steel materials shall conform to the required values of minimum impact energy, temperature, and minimum equivalent absorbed energy. Hardness and hydrostatic tests shall also be performed.

Forged Alloy Steel and Stainless Steel valves For High Temprature Service: ASTM A182/ A182 M-98ª(F 304, F 304H, F 304L, F 304N, F304 LN, F 309H, F310, F 310H, F 310 MoLN, F 316, F 316H, F 316L, F 316N, F 316LN, F 317, F 317L, F 347, F 347 H, F 348, F 348 H, F 321, F321 H), This specification covers forged or rolled alloy and stainless steel pipe flanges, forged fittings, and valves and parts for high-temperature service. After hot working, forgings shall be cooled to a specific temperature prior to heat treatment, which shall be performed in accordance with certain requirements such as heat treatment type, austenitizing/solution temperature, cooling media, and quenching. The materials shall conform to the required chemical composition for carbon, manganese, phosphorus, silicon, nickel, chromium, molybdenum, columbium, titanium. The material shall conform to the requirements as to mechanical properties for the grade ordered such as tensile strength, yield strength, elongation, Brinell hardness. All H grades and grade F 63 shall be tested for average grain size.

Forged Duplex Steel valve: ASTM A182 (F 50, F 51, F 52, F 53M F 54, F 55, F 57, F 59, F 60, F 61, F 904L)

ASTM A352/ A352M (LCA, LCB, LCC, LC1, LC2, LC2-1, LC3,LC4, LC9(J31300), CA6NM), This specification covers steel castings for valves, flanges, fittings, and other pressure-containing parts intended primarily for low-temperature service. Several grades of ferritic steels and one grade of martensitic steel are covered. All castings shall receive a heat treatment proper to their design and chemical composition. It should be recognized that liquid quenching of the ferritic grades is normally required to meet the mechanical properties of heavier sections. The steel shall conform to the requirements as to chemical composition specified. Tensile test and impact test shall be made to conform to the requirements specified.

ASTM A351/ A351 M (CF8(F304), CF3(F304L), CF3M(F316L), CF8M(F316)), This specification covers austenitic steel castings for valves, flanges, fittings, and other pressure-containing parts. The steel shall be made by the electric furnace process with or without separate refining such as argon-oxygen decarburization. All castings shall receive heat treatment followed by quench in water or rapid cool by other means as noted. The steel shall conform to both chemical composition and tensile property requirements.

ASTM A217/ A217 M-98a( WC1, WC4, WC5, WC6, WC9, WC11, C5, C12, C12A), standard specification for steel casting, martensitic stainless and alloy, for pressure-containing parts, sutable for high-temprature service.

ASTM A351/ A351 M (CN7M, CD4MCu, CG8M, CK3MCuN), This specification covers austenitic steel castings for valves, flanges, fittings, and other pressure-containing parts. The steel shall be made by the electric furnace process with or without separate refining such as argon-oxygen decarburization. All castings shall receive heat treatment followed by quench in water or rapid cool by other means as noted. The steel shall conform to both chemical composition and tensile property requirements.

ASTM A890/ A890 M, This specification covers castings, iron-chromium-nickel-molybdenum corrosion-resistant, duplex(austenitic/ferritic) for general application. Castings shall be heat treated in accordance with the required procedure and heat-treat temperature. Proper heat treatment of these alloys is usually necessary to enhance corrosion resistance and in some cases to meet mechanical properties. Minimum heat-treat temperatures are specified; however, it is sometimes necessary to heat-treat at higher temperatures, hold for some minimum time at temperature and then rapidly cool the castings in order to enhance the corrosion resistance and meet the required mechanical properties. The steel shall conform to the required chemical composition for carbon, manganese, silicon, phosphorus, sulfur, chromium, nickel, molybdenum, copper, tungsten, and nitrogen. Castings shall be marked for material identification with the specification designation and grade.

SA-494/ SA-494 M(UNS N02100, UNS N24135, UNS N04020, UNS N24030, UNS N24025, UNS N24130, UNS N30012, UNS N30007, UNS N30003, UNS N06040, UNS N30002, UNS N30107, UNS N26455, UNS N26625, UNS N26055, UNS N30003, UNS N26022, UNS N08826, UNS N26059), This specification covers nickel, nickel-copper, nickel-copper-silicon, nickel-molybdenum, nickel-chromium, and nickel-molybdenum-chromium alloy castings for corrosion resistant service. The castings shall be heat treated. When Class 1 is specified, grades CY40 and M25S shall be supplied in the as-cast condition. When Class 2 is specified, grades CY40 and M25S shall be supplied in the solution treated condition. When Class 3 is specified, grade M25S shall be supplied in the age-hardened condition. The chemical composition requirements of the alloys are presented. The tensile property requirements including the heat treatment procedure for the castings are presented in detail. It is required that one tension test shall be made from each master heat except for grades M25S and CY5SnBiM when the master heat is used to pour the castings. One tension test shall be made from each melt except for grades M25S and CY5SnBiM. Test results shall conform to the specified tensile requirements.

Petrosadid: Material

چگونه ما میتوانیم به شما کمک کنیم؟

اگر سوال، نظر یا بازخوردی دارید ، لطفا با ما تماس بگیرید. ما آماده کمک هستیم!